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The Renormalized Numerov Method [Johnson, J. Chem. Ph~s. 67, 4086 (1977)] is exten- 
ded to include equations possessing an explicit &St-order derivative term. The variety of 
boundary conditions which can be employed is enlarged. Comparison with other numerical 
methods is made. ‘i’. 1986 Academic Press, Inc. 

1. INTRODUCTION 

This paper is concerned with the numerical solution of second-order differential 
eigenvalue equations which can be written in the form 

Y(x)=)+) ul(x)i-q,(x) Y(x), a<.u<b, ‘, 1.1) 

where p(x) and qis are continuously differentiable functions which may present 
some singularity at the bounds; 

qns = k(x)[ V,(x) - J.]? (1.2) 

I. denotes the eigenvalue, s is some parameter, V,(x) is analytic or may be expressed 
in the form of some polynomial expansion. Such boundary value equations occur 
frequently in the solution of Schroedinger equations encountered in molecular 
physics [2]. The paper presents an extension of the well-known renormaiized 
Numerov method (RNM) as developed by Johnson [ 11 in the form of a two term 
recurrence algorithm. 

Two particular cases of Eq. ( 1.1) are relevant to our purpose. 

(a) That in which the first derivative term is absent, yielding the simpler 
equation 

Y(X) = qA5(-y) Y(.xj, a<xdb. (1.5j 

(b) That in which the first derivative term may be expressed as a function 
g(.y), Eq. (1.1) taking the form of an inhomogeous equation 

F(X)= q&x) Y(X) +g(~j. 
239 
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While Eq. (1.1) may in principle always be transformed by a suitable change of 
the dependent variable into the form (1.3), the resulting equation may not satisfy 
the conditions required to determine the solutions, e.g., if the function q is anywhere 
negative on the interval [a, 61, hence an approach such as that outlined above is 
appropriate. 

The Johnson algorithm has been applied to equations of the form (1.3) with 
boundary conditions such that Y(x) = 0 at both bounds. The technique has not 
been extended to include other boundary conditions or to equations explicitly 
possessing a first derivative term in instances other than those with trivially simple 
potentials. 

We shall explore the solutions of Eq. (1.1) by means of two term recurrence 
algorithms associated with one of the following statements regarding boundary con- 
ditions: 

Y(a) = a, 

Y(u) = c!, Y(b) = P, (ISa) 

(v’(b)=/l or Y(a) = a, y(b) = P, (15b) 

Y(a) = a, Y(b j = a. (1.k) 

Each of these boundary conditions is translated into a condition governing the 
quantities R and S of the Numerov algorithm by the means of (1.5) after which 
iteration may be performed Cl, 21. 

As a separate problem related to boundary conditions we shall have reason to 
consider equations for which the initial values of R and S at the bounds are not 
determinable a priori. A technique will be presented which permits an estimate of 
the starting value of R and S to be made. 

The above considerations were determined by the requirements of certain 
equations encountered in the field of molecular physics, notably radial and angular 
Schrodinger equations describing large amplitude nuclear motion in molecules. 
Algorithms developed and the techniques of evaluation of boundary conditions 
have been tested on specific equations and the results compared with those of some 
other approaches. 

2. ALGORITHMS 

The following difficulties stand in the way of exploiting the useful characteristics 
of the RNM approach: 

(i) The explicit presence of the first derivative term precludes direct 
application of RNM since the Numerov algorithm applies only to equations in 
which the first derivative term is absent. 

(ii) The presence of singularities at x= a and/or x= b requires some alter- 
nate procedure in the vicinity of the bounds. 
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(iii) The boundary values c1 and /I are not necessarily known explicitly. In 
some cases a certain amount of information is available from the form of the 
function V,(X) and a procedure to determine CI and j? may be implemented. 

(iv) The function qn,S is not necessarily positive over the entire interva1 [a, 51 
in which case the operator L is not of “monotone” kind [3,4]. 

Difficulty (i) may be overcome in one of several ways discussed below. Difficulties 
(ii) and (iii) have been overcome elsewhere [2] by the implementation of a 
graphical procedure. We here present an alternate which has the advantage of 
removing the singularities at the bound while also preventing the operator L 
becoming nonmonotone at the bounds. This procedure therefore solves difficulty 
(iv) in addition to (ii) and (iii). 

The general procedure is as follows. 
In the problem as stated in (l.l), any derivatives are replaced by some finite dif- 

ference approximation. The resulting linearized difference equations may be written 
very generally as follows: 

AY,,-,+BYn+CY,,+,=O (l<n<N+l) 0.1) 

associated with one of the boundary conditions (1.5) and where A, B, and C are 
some expressions depending upon the values of P(X) and qJ.x) at various grid 
points. 

The above three term recurrence relation may be transformed to a two term 
relation provided certain convergence criteria are met [S]: 

R, = -(B/C) - (,4/C) R,;! , (forward iteration), (2.2) 

S,,= -VW)-WW,;,!, (backward iteration ), (2.3) 

where 

Given an arbitrary value of the parameter 1, the backward iteration is perfomed 
using (2.5) and starting from the value S,, I. When the condition S,, < 1 first 
occurs, the iteration is stopped at that point which is by definition the matching 
point x,~~. This is approximately the position where the first derivative of the 
solution is zero. The forward iteration is then carried out using as starting value R, 
and employing (2.4). During the calculations the nodes are counted (a node is 
located between x,, and x, + I when R, < 0). The function D(L) [S] is computed 
from 
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where the functions A and T at grid point -‘c,~ are defined by 

T,, = V2/12) qn, 

A,, = W - TM1 - Tn). 

(2.6a) 

(2.6b) 

If A. is an eigenvalue, o(A) is zero. The iterations may be implemented once the 
initial values R, and S,,, + , are defined, in other words once Y(X) is known (or may 
be estimated) at grid points 1, 2, AJ, N+ 1. 

Dependent upon which alternate for solving the first difficulty (i) is adopted, 
three distinct approaches present themselves. 

a. Method (1) 

Substituting the usual three term algorithm [3] 

(h/2) Lh(uj) = -bjyiP, + ajuj-, + ajq- cjuj+, = 0, 

where 

aj= 1 + (/2*/2) qj, 

b,=$[l +hp,/2], 

c,=i[l -hp,/2], 

into (2.1) we obtain 

A = 1 + hpJ2, B= -(2 + 12T,), c= (1 -hpJ2), (2.7) 

where 

Thus 

T,, = (h*/W qnv u,, = (2 + lor,,)/( 1 - T,). (2.8) 

R,= U,,/(l -hpJ- [(l +hp,/2)/(1 -hpJ)l R,;:,,, 

S,= unl(1 +hp,P- CC1 -hp,,PHl +lzpn/2)1 S,-:,. 

(2.9) 

(2.10) 

R,, and S, can be iterated once R, and S,, , (i.e., the ratios !P2/Yl and YNIY,+ ,) 
are specified. 

To keep the degree of accuracy similar to that of the Numerov algorithm, hence 
to be able to compare the different methods, the computations must be carried out 
for two values of h (h and h/2) and the results introduced in the Richardson 
extrapolation leading to a theoretical result in 0(/z”). Then at each step of the com- 
putation, R,, and S, are evaluated for h and h/2 and extrapolated. 

This procedure is somewhat lengthy since we use two iterations at every step. 
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b. Method (2 j 
Let us consider the problem as stated in (1.4) and expand Y(s) in the following 

power series: 

Y n + 1 + Y,,- 1 = 1 [2/F/(2k)!] Yup’, (2.ilj 

Y n+l - y,u,, - 1 =I [2hczk+ “,‘(2k + I)!] Y;vi,k’ Ii. 

To the fourth order, we get the iell-known results [7]: 

(2.12) 

~,~,.,cl-~,,+,1-~‘,,C2+~0~,1+~Y,,~,C~-~,~,1 

= W/WC&+ If log, + g,- 11. (2.13) 

~,,+,CO,5-T,+,I-~,~,CO,5-T,~,l 

= u~*lwg,+ I -g,I-1+f12:hj Y:,]. [2.14) 

Equation (2.13) is the usual Numerov algorithm. Considering the function 
p(.u) Y’(x) as g(x) in (1.4) and setting 

A, = (OS - T,,)i(l - T,i, (2.15) 

)‘,I = Yn( 1 - Tn), (2.16) 

we obtain 

?‘r!fl -[(2+10T,)/(l-T,)14’,1+!‘n+1 

= wmL+, Y,+ 1 + ~oP,,‘v,,+P,,~,~~,-,I~ (2.l7) 

(1 n+ I ?‘n + 1 -A-,2’n-1 

=(~~‘112)CP,,+, YI:,+t +iWj Y;u:,-~,,-lYI,-,]. (2.18) 

Since 

CP,, W’ = Y,(P:, f P,‘,) + Pn4n Ym (2.19) 

rp, Kl” = K(3p,JJ;z + Pi + p:: + q,,) + Yy,,(2q,p;, + p;qn + pnq,,). (2.20) 

We finally get, after dropping the terms in O(h4), 

I’ n+l -y,U + 10T,, + 11~(2T,p:,+ p:T,,+ p,,T,jli(l - T,yj + .11,z+ i 

=(h2/12)[12p,+h’a,) u;,, (2.21) 

A n+lJ’n+l -[2h~,,T,/(l-T,jl~,,,-.4,,~~,?,,,~~, 

= hY,Cl + (WUP:, + d)l, (2.22) 

where 

u,, = 3p,, P:, + P5, + Pi + q*2 PN. (2.23) 
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We now eliminate !I$ between (2.21) and (2.22) obtaining, after rearranging the 
terms 

where 

a,Y,-,+b,y,+c,*Y,+,=O, (2.24) 

~7,~ = 6 + 6hp,A,m- 1 + h2(p:, + pi), 

b,= -(l-T,)-’ [12+607’,+2h2(p:,+p;+5p;Tn-p;T,,)], 

c,=6-6hpnA,+,+h’(pl,+p;). 

Finally, the two-term recurrence relations can be written as follows: 

R,~=(U,IY,,)-(Z,,IY,)R~~,, 

s,*=(~,Iz,,)-(y,~Iz,)~,-:,, 

where 

and 

y,,= r~,-~PA~+,IC1- Tn+Il, 

zn= C~,,+~PJ.-,IC~ - Tn-11, 

u,l= [(2 + 10T,,cr,*-2h2p;Tn], 

a, = 1+ (h2/6)(p:, + P;). 

Note that R,, and S,, are defined here by: 

R, = I’m+ l/J’,, and Sn=,vn-IlYn. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Clearly this algorithm reduces to the Numerov algorithm when p(x) = 0 and 
furthermore to the algorithm of method 1 if terms of degree higher than h2 are 
dropped. 

This algorithm presents the advantage of having theoretical local truncation 
errors similar to those of the Numerov algorithm and is usable in any general 
problem as stated in (1.1). 

c. Method (3) 

The first derivative term p(x) Y(x) in (1.1) can be removed mathematically by a 
change of the function Y(x): 

ul(x) = x(x) A(x). (2.35) 

This leads to an equation for which the Numerov algorithm may be applied 
directly. However, the transformation may be difficult and, considered 
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mathematically, the transformed function may be badly behaved (particularly at the 
bounds) as shown in the Sect. 4 (Legendre equation). This kind of transformation 
has been successfully used in solving the radial equation for the hydrogen atom 
PI. 

Let us substitute (2.35) into (l.l), 

x”(X) = [(p(x) A(x) - 2A’(x)y~(x)l 

x f(x) + [(q,(x) A(x) +p(x) A’(x) - A”(x))/A(x)] x(x). (2.36) 

It is easy to see that by choosing 

A(x) = exp 
[ 

1 (l/2) P(X) dx 
I 

the system (1.1) becomes 

x”(X) = L-4.h) + $P2W - $‘(-x)1 x(x) 

(2.37) 

(2.38) 

while the boundary conditions are: 

Introduce 

x(a) = a/A(Q)? x(b) =fi/~(b). (2.39) 

f&(x) = qs(x) + &P’(x) - &D’(s), 

T, = (h’/12) Q,,,, = T,, + (h2/24)(p;j2 -p;j. 

The Numerov algorithm can now be written in the form 

Xn-,(l-~,-l)-(2+10~,)X,,+X,.+,(1-~,,+,)=0. 

Finally, by performing the usual substitution 

XJl -t,J=F,z, 

we obtain in setting R, = F,* + ,/F,> and S,> = F,- ,;iF,>, 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

R,= U,-l!R,mm,, (2.44) 

s,,= ~n-~isfl,,~ (2.45 j 

where 

U” = (2 + lOs,)/( 1 -T,). (2.46) 

For the evaluation of the eigenfunctions this method requires a supplementary 
step consisting in multiplying the function x(x) by A(s) and care must be taken 
especially at the bounds where some indeterminacy may result. For example, in 
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TABLE I 

Functions involved in the Various Algorithms 

Method 

(l):(W 
(2):(W 
(3):(x) 
(3):(Q 

2+ 12T, 
(2+10T,)cc,-22h$?,ST, 

2 + lOr, 
(2+ lOr,)(l--5,)-l 

1 - .5hp, 
a,(1 - r,J 

1 -Tn+, 
1 

I+ Shp, 
cc,‘(l- T,-,) 

1 -rn-, 
1 

Nore. a+ =cc,+hp,A,-,, a- =a,,-hp,,A,+, 

Legendre-type equations, A (x) = (1 - x2) - 1/‘2 and A( - 1) = A( 1) = infinity. Care 
must be taken in the evaluation of the boundary conditions in (2.39). The change of 
function may also present problems concerning the volume element which must be 
verified for the transformation and it is necessary to make sure by examining the 
behaviour of x(x) at the bounds that Y(X) is actually an acceptable solution of the 
equation in all of the space including the bounds and that this solution is nor- 
malizable [9]. In spite of these difficulties, they present no major problems in the 
applications discussed below. 

In Table I the various expressions for the discrete functions U,, Y,, and Z,, 
involved in the algorithm of general form are summarized: 

R, = C~nlYnl - CZJYnlR,2 ,, (2.47) 

s, = cr-~,,/Z,,l- IIY,,/Z,,l s,-: ,’ (2.48) 

Note that in this method, the iterations may be performed in terms of either I,, 
(method 3a) or F,, (method 3b), the latter being faster since one calculation per step 
is saved. 

Before presenting the results obtained from each of the algorithms we must dis- 
cuss how the boundary conditions translate in terms of the starting values RI and 
Sn+l. 

3. NUMERICAL EXAMPLES: SIMPLE CASES 

The methods described above are first illustrated by solving two eigenvalue 
problems of the form (1.3) associated with non standard boundary conditions. 

The determination of the starting values R, and SN+ I has been treated in a 
previous publication [2]. Let us recall briefly how the boundary conditions (1.5) 
translate in terms of the two-term recurrence algorithms: 

Y(o)=0 -+ R, = infinity, 

ul( b) = 0 + S, + , = intinity, 

Y(a)=0 +R, = U,P, 
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‘f”(b)=0 +Sjv+,= u,,,P, 

Y(a) = dqnj -+ R, = U,/2+ hm/(2-ZT,). 

Y(b) = /3!P(b) -+ SW+ 1 = UN+ ,/2 -h/?/(2 - 2T,v~, I) 

EXAMPLE 1. Consider the eigenvalue problem presented by the Mathieu 
equation 

y;,(x) = [2s cos x-a,(s)] yn,(x) (O<xdnj, (3.1) 

where s is an integer and u,, the eigenvalues. The solutions to this equation are 
known to be periodic (period x or 2~). There exists a set of eigenvalues n,, 
corresponding to even solutions and a set b,, corresponding to odd solutions ClO]. 
The odd solutions are related to boundary conditions 

y,,(O) = y,,(xf) = 0 

while the even solutions are related to boundary conditions; 

(3.2) 

J&(O) = 4’X,( 7t) = 0. (-7.3, 

Method 2 (with the term P(X) = 0, i.e., the usual RNM) has been employed for 
this problem (even solutions, i.e., with boundary conditions Y’(.O) = ‘P’(X) = 0). 
Approximate eigenvalues A, have been computed corresponding to different values 
of step-size 12. The results are presented in Table II for a selection of values of the 
parameter S. The relative errors are also presented using as exact eigenvalues a,, of 
reference [lo]. We observe that 1 - A/E behaves as O(h”) as expected. 

EXAMPLE 2. The eigenvalue problem 

l”‘(X) + u( 1 + X2)--2. J,(X) = 0. OfX6 1 

TABLE II 

(3.4) 

4 -6.662567 1.29( -- 1) 2.910220 3.74( - 1 ) 
4 -5.815025 2.58( -3) 1.782272 4.26( -2) -40.643858 9.521-3) 
h - 5.800894 1.46( -4) 1.853593 2.48( -3) -40.267857 2.75( -4) 
1 F - 5.800099 9.14( m-6) 1.857876 i.67( -4) - 40.257444 i.65(-5) 

Q - 5.800049 5.20( - 7) 1.858164 !.24(-5) -40.256821 1.24( -5‘: 
T&T - 5.800046 2.01(-8’) 1.858186 5.40( -7) -40.256782 7.O’( -8) 

Note. 1 is the computed eigenvalue 
a Corresponds to s = 10, the exact eigenvalue is LI = -5.800046 (n = 0). 
’ Corrresponds to s = 10, the exact eigenvalue is a = 1.858’187 (n = 1). 
‘ Corresponds to s = 50, the exact eigenvalue is a = -40.256779 (n = 0). e = 1 - a!l. 
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TABLE III 

y”++(l+.~)-‘y=O, O<x<l,~~(f?)=~‘(l)=O, Method 2 

h 1 ia) (b) (c) 

$ 6.782418742 7.51(-3) 6.61( -3) 2.96( -4) 

$ 6.743273383 1.69( -3) 1.84( -3) 1.26( -5) 

+6 6.734640928 4.12(-4) 4.70( - 4) 1.89( -7) 

h 6.732552927 1.02( -4) 1.18( -4) 6.09(-8) 

kt 6.732037890 2.56( -5) 2.96( - 5) 1.27(-8) 

ii% 6.731909184 6.50( -6) 7.39( -6) 1.69( -9) 

Note. The exact value is PI =6.731865405, 1 is the computed eigenvalue. (a), (b) and (c) are the 
absolute values of 1 -P,/n, using, respectively, method 2, method (2.3) and method (2.9) from Usmani 

c111. 

with boundary conditions 

y(0) = y’( 1) = 0 (3.5) 

represents an other example where a direct application of the RNM may be used 
with boundary conditions other that the standard Y(x)=0 at bounds. This 
problem has recently been studied by Usmani [ll]. Comparison of the present 
method of solution with his results is presented in Table III. The rate of con- 
vergenge is equivalent to that of method (2.3) described in Ref. [ll]. 

4. APPLICATION TO LEGENDRE-TYPE EQUATIONS 

Let us consider the following equation: 

Y(x) = [(2x/( 1 - x2)] Y(x) + Cl/( 1 - x’)] [S2/( 1 - X2) + V(X) - A] Y(X) 

(-l,<x<l) (4.1) 
with boundary conditions: 

Y(-l)=,, Vl)=P. (4.2) 

With V(x) = 0 and CI = + l,O; fi = 1 this is the Legendre equation. The addition 
of the term V(x) gives rise to the Legendre equation with an added potential, an 
equation which is of importance in molecular quantum theory and in molecular 
scattering [2]. 

V(X) is commonly expressed in the form of an expansion around x= +l, 

V(x) = 1 Ai(X - x,,)’ (i = 1, 2,...), (4.3) 

where xcy is that value of x at which the potential is a minimum. 
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Since x= -1 is a regular singular point, Eq. (4.1) has a Frobenius-type series 
solution around the singularity: 

Y= tx-ay ($ n,cxu,i)- (4.4) 

Proceeding as usual, the coefficients are given for methods (1) and (2) by 

c = s/2, (Lj.Si 

ao= 1, (4.5) 

a, = (s*-.s-2J),‘4(s+ I), (4.7) 

a2 = [s” + 5s3 - 4s2(1 - 2) - 4s(2E, - 2A, - 1) -t 4(1’ - 22 + 2A ,)I/ 

[32(s + l)(s + 2)]. (4.8) 

Near x = -1, the solution may therefore be expressed as 

Y(x) = (x+ 1y+ a,(x+ l)s’z+ ‘ +a,(.X+ l)s;z+l. (4.9) 

Replacing x by - 1 and by - 1 + h, we may evaluate the ratio 
R,=Y(-l+lz)/Y(-1). For instance R,=Y(-l+h) for s=Q and R,=infinity 
for s > 0. 

The same procedure can be used at the upper bound x= I. This result is in 
agreement with analytic values calculated from the Legendre polynomials and 
associated functions. 

For method (3.a), the Frobenius coefficients for x evaluated at x = - 1 are: 

c = (s + I )/2, (4.10) 

a,= 1, (4.11) 

a, = (s2 - 211- 1)/4(s + l), (4.12) 

f2, = [2cz(2cz - c - A- 1) + 2~(2A 1 + 1 j + A7/[ 1&(2c + 1 I]. (3.13) 

and around x = - 1, the solution is given by 

x(x)=(1 +x)‘5+1’:2 [l +a,(1 +x)+0,(1 +x)?]. (4.14) 

Here, in both cases (s = 0, s > 0), R, = infinity. Analytic evaluation of x(x) from 
the Legendre polynomials and ,4(x) = (1 -~‘)-l:’ gives the same resuh, for 
instance I( + 1) = 0, irrespective of the value of s. 

The evaluation of R, expressed in terms of the function F,, = (I- T,) x,, (method 
3.b) where T, is defined by Eq. (2.8) is obtained in the following way. 

Let the equation be written as: 

x:: = Qnxn. (4.15) 



250 LEROY AND WALLACE 

Multiplying both sides by h2/12 and substituting in the expression for I;, we obtain 

F, =x, - (h’/12) x;. (4.16) 

The second derivative of x(x) at grid point X, is determined from (4.14): 

lJ’(x)=A(l +x)‘“-3”‘+q1 +x)(s--1)/2+ (-(I +X)b+w2, (4.17) 
where 

A = (s2 - 1)/4, (4.18) 

B=a,(s+3)(s+ 1)/4, (4.19) 

C=a,(s+3)(s+5)/4. (4.20) 

Substituting in (4.16) we obtain the values of F,, at x = -1 and x = -1 + h and 
therefore the value of K 1. 

Note that a boundary condition such that x( - 1) = 0 does not imply necessarily 
F( - 1) = 0; this situation occurs only if x”( - 1) = 0. Therefore the starting values R l 
will differ if method (3) is used in terms of !PH or in terms of F,,. 

Both procedures have been tested on the Legendre equation itself. The Eq. (4.1) 
is considered as an eigenvalue equation. The analytic eigenvalues are given by 
;1, = L(L + 1) and the corresponding eigenfunctions are the Legendre polynomials 
(s= 0) and the associated Legendre functions (s> 0) pSL(x). The numerical 
solutions are carried out with the three methods and the results presented in 
Table IV. 

As shown, for s=O, the better results were obtained from method (2) (con- 
vergence is as O(h4). For s > 3, methods (2) and (3) are also in 0(1z4). For 0 <s < 3, 
both (2) and (3) are in O(h’). We mention nevertheless that (3) is more stable for 
higher eigenvalues. 

The RNM has been shown by Johnson [S] to be extremely sensitive to the initial 
values of R, and S,, i. For small values of s, methods (3) fail to give expected 
fourth order convergent results even though the values of x(x) at the bounds 
evaluated from the series expansion agree with the corresponding analytic values. In 
spite of that, successful results were obtained by using R, and S, as initial values 
for the iterations, i.e., starting the iterations one grid point removed from the 
bounds and fixing x( + 1) = 0. 

The success attained for the Legendre equation suggests a similar scheme to solve 
the analogous equation with a potential V(X). 

To test the method described above, a previously employed potential was adop- 
ted since eigenvalues and vectors obtained by a more customary numerical (com- 
plete set expansion) method of solution were available. [12]. It must be recalled 
that this equation has no analytic solution. 

The potential function is zero at x = -1 and tends to infinity as x tends to 1 and 
is expressible by the following expansion: 

V(x,=C A,(x+ l)i (i= 1, 2,...), (4.21) 
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TABLE IV 

Legendre Equation 

h Method ( 1) 

s:=O,n=l 
a 1.63( - 1) 

t 2.49( -2) 

A 4.66( - 3) 
4 7.85( -4) 

23 2.27( -4) 

ih 8.78( -5) 

Method (2) 

3.62( - 1) 
1.05( -2) 
8.81(-4) 
6.65(--5) 
4.28( -6) 
2.61( -7) 

Method (3) 

4.96( - 1) 
4.44-l) 
4.04(-l) 
3.70( - 1) 
3.42( -- 1 j 
3.17(-1) 

Method( 3b: 

1.69( -2) 
1.24( -2) 
1.13(-2) 
1.09( --3) 
1.07( -2) 
9.97( - 3 J 

s=l,n==l 

f 
4 
+6 
h 
Q 
I 

7% 

s=4,n=l 
4 
$ 
A 
h 
B 
ik 

1.74( - 1) 
9.39( -2) 
4.?1( -2) 
2.35( -2) 
1.17(-2) 
5.87( -3) 

1.16(-2) 
2.46( -3) 
5.93( -4) 
1.48( -4) 
3.65(-5) 
9.00( - 6) 

6.32( -2) 
2.35( -2) 
5.41(-3) 
1.08( -3) 
3.98( -4) 
8.71(-5) 

1.67(-l) 
2.57( -2) 
2.43( - 3) 
1.04( -4) 
1,85(-5) 
3.00( - 6) 

5.26( -2) 
1.41( -2) 
3.69(-3) 
9.48( -4) 
2.40( -4) 
6.06( - 5) 

1.81( -2) 
1.36( -3) 
9.48( - 5) 
6.54( -6) 
4.47( -7) 
3.10( -8) 

9.65(-2) 
8.14i -3) 
5.02( -4) 
3.17! -5) 
2.01( -6) 

n/a 
nja 
iz,‘c 
;?;‘a 
R/a 
da 

Noze. Absolute values of 1 - ,I,/;.,, I, is the computed value, L, the analytic vaiue. 

where the Ai are the following constants: 

A I = 865.596, A, = 1065.19, A, = 118.02, 

A, = 138.8, AS= -41, A, = 53.447. 

The various methods were tested for different values of h. Equation (4.1) becomes 
here 

where 

‘y”(x) = p(x) Y(x) + ql(.&j Y/(x), (4.22) 

q&x) = (1 -x2)--1 [P/(1 -2) + V(x) - E,,]. (4.23) 

The J= 0 case corresponds once more to boundary conditions such that the eigen- 
function is not zero at the lower bound but is zero at the upper bound. The first 
derivative is nonzero at the lower bound and is zero at the upper bound. The J > 0 
case corresponds to boundary conditions such that the eigenfunction is zero at both 
bounds, its first derivative being non zero at the lower bound but zero at the upper 
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TABLE V 

Angle Bending Equation 

h Method (1) Method (2) Method (3) Method (3b) 

J=O,K=I 

a 5.23( - 2) 1.84(-l) - - 

3 1.14( -2) 3.51( -2) - - 

h 2.61(-3) 6.29( -4j 6.18(-l) 4.31(-2) 
h 5.18( -4) 1.29( -4) 3.70(-l) 3.89( -2) 
23 1.03(-4) 2.66( - 5) 5.01(- 1) 3.47(-2) 
iis 3.61( -5) 4.19( -6) 4.64(-l) 3.21( -2) 

J=l,K=I 

4 4.81(-l) 9.66( -2) 7.25( -2) 3.16(-l) 
i 1.62( -2) 3.06( -2 j l.ol(-2) 2.04( - 2 j 
ii 6.44( - 2) 8.60(-3) 2.45( -3) 8.04( -4) 
A 2.05( - 2) 1.84( -3) 4.61( -4) 6.20( - 5) 
8 7.00( -3) 7.11(-4) 6.80( -5) 3.27( - 6) 
iis 3.21(-3) 2.04( -4) 9.91(-6) 8.64( - 7) 

Note. Absolute values of 1 -AL/&, /2, is the computed value, ,Ir is the value obtained by method (2) 
with 2001 grid points and is assumed to be the exact value. 

one. Therefore the initial value R, has to be extrapolated either graphically or from 
the series expansion in the case J=O. In both cases S,, I is infinity (since Y(X) 
tends to zero very quickly) or as U,, 1 /2 (since the first derivative of P(x) is zero 
at the upper bound). The results are given in table 5 for J= 0 and J= 1 (K= 1). 

The numerical methods presented here do have the great advantage of speed of 
computation when compared to the complete set method together with the fact that 
the functional form of the eigenfunctions is immediately obtained rather than the 
usual set of eigenvector coefficients which accompany the complete set expansion. 
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